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Understanding Mobility NeedsQ Learning from the past _

Supporting NASA’s goals of sustained human presence on the Moon and the agency’s desire to demonstrate ISRU and E&C capabilities on the lunar surface in the near future, We can learn lessons from. design and Opet ation of rovers flown in previous planetary missions
a variety of mobility cases and scales will likely be necessary to meet all the necessary demands of an expansive ISRU or E&C mission [5,6] and the objectives and use cases out- to enable more robust design and exploration on the lunar surface
lined in the ADD [2]. Establishing a long-term presence most likely will require a “fleet” of rovers, some for science and exploration, others for autonomous uninterrupted con-

. . The MER-Opportunity rover operated for 14 years on the Mars surface before a major dust storm reduced
struction and still more for for crew transport.

Use Cases the power from the solar arrays to where comm was not possible.
: : Lesson Learned: some environmental conditions are too much to overcome but an active dust mitigation
Assumes Single Vehicle .. .
e el strategy is important when relying on solar arrays for power.
ISRU Prospecting ISRU Material ISRU Regolith Excavator | Long-Rage Traversability Site Survey Infrastructure
Transportation & Loader Deployment On April 20, 1973, Lunokhod-2 drove into a relatively small crater and the radiator got covered in dust while
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eter and/or camera « Operate for weeks with |+« Assume to be equipped for structure payloads for deploy- |+ Carry survey instruments |« May be equipped with spe-
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100s of km of km . Map areas up to 100s of . Deploy infrastructure ele- - 22.2 miles, deployed instruments and collected 254 pounds of rock and soil samples.
km? over mission lifetime ments (e.g.VSAT) in poten- o % N Lessons learned: All of the Apollo-era Lunar rovers were successful but were designed for a limited life
tially extreme terrain e e and the Artemis program needs rovers that can sustain unlimited lifetime missions.
Sub-R ¥ = The Curiosity rover has been active on Mars for 4187 sols (over 11 years) exploring Gale crater and Mount
(ex. SLIM O X =~ " Sharp on Mars as part of NASA’s MSL mission.
microrover) | Lessons learned: Each wheel is independently steered, actuated and geared to allow for climbing in soft
| sand as well as scrambling over rocks. Patterned tracks in the sand indicate distance travelled. Sensors lim-
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Key
X : This size rover class likely would not be able to perform the function within the use case
O: This size rover class will likely be able to perform the functions within the use case

Establishing a sustained lunar presence will require contributions from NASA and its international partners, as well as typical aerospace contractors, newer aerospace companies,
non-typical aerospace contractors (e.g., terrestrial excavation and construction companies), and input from academic institutions. These rovers will need to be durable, be able to be
repaired in situ and thus maintained for long-term use, and be able to traverse long distances with some level of autonomy. Further work will map capabilities of mobility platforms Please take our survey to

to specific needs and size classes to provide traceability to current technology and inights into new technology developments that may be needed for sustained exploration. help us understand your
needs more fully!
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